Follow @travisleroy Super Collider Blog

How our solar system really moves through space.

Scientists Create Solid Light!"The researchers constructed what they call an “artificial atom” made of 100 billion atoms engineered to act like a single unit. They then brought this close to a superconducting wire carrying photons. In one of the almost incomprehensible behaviors unique to the quantum world, the atom and the photons became entangled so that properties passed between the “atom” and the photons in the wire. The photons started to behave like atoms, correlating with each other to produce a single oscillating system.”

Scientists Create Solid Light!

"The researchers constructed what they call an “artificial atom” made of 100 billion atoms engineered to act like a single unit. They then brought this close to a superconducting wire carrying photons. In one of the almost incomprehensible behaviors unique to the quantum world, the atom and the photons became entangled so that properties passed between the “atom” and the photons in the wire. The photons started to behave like atoms, correlating with each other to produce a single oscillating system.”

spaceexp:

Every single satellite orbiting Earth, in a single image.

spaceexp:

Every single satellite orbiting Earth, in a single image.

Read Richard Feynman’s physics lectures online for free now! Complete with diagrams.
View them here.

Read Richard Feynman’s physics lectures online for free now! Complete with diagrams.

View them here.

infinity-imagined:

Sunsets and sunrises seen from the International Space Station.

Amazing video of space shuttle launch, be sure to watch it till the end.

DID YOU KNOW 3.14 is PIE backwards.

DID YOU KNOW 3.14 is PIE backwards.

fouriestseries:

Gabriel’s Horn and the Painter’s Paradox 
Gabriel’s Horn is a three-dimensional horn shape with the counterintuitive property of having a finite volume but an infinite surface area.
This fact results in the Painter’s Paradox — A painter could fill the horn with a finite quantity of paint, “and yet that paint would not be sufficient to coat [the horn’s] inner surface” [1].
If the horn’s bell had, for example, a 6-inch radius, we’d only need about a half gallon of paint to fill the horn all the way up. Even though this half gallon is enough to entirely fill the horn, it’s not enough to even coat a fraction of the inner wall!
The mathematical explanation is a bit confusing if you haven’t taken a first course in calculus, but if you’re interested, you can check it out here.
Mathematica code:
x[u_, v_] := u
y[u_, v_] := Cos[v]/u
z[u_, v_] := Sin[v]/u
Manipulate[ParametricPlot3D[{{x[u, v], y[u, v], z[u, v]}}, 
    {u, 1, umax}, {v, 0, 2*Pi}, 
    PlotRange -> {{0, 20}, {-1, 1}, {-1, 1}}, 
    Mesh -> {Floor[umax], 20}, Axes -> False, Boxed -> False], 
    {{umax, 20}, 1.1, 20}]
Additional source not linked above.

fouriestseries:

Gabriel’s Horn and the Painter’s Paradox 

Gabriel’s Horn is a three-dimensional horn shape with the counterintuitive property of having a finite volume but an infinite surface area.

This fact results in the Painter’s Paradox — A painter could fill the horn with a finite quantity of paint, “and yet that paint would not be sufficient to coat [the horn’s] inner surface” [1].

If the horn’s bell had, for example, a 6-inch radius, we’d only need about a half gallon of paint to fill the horn all the way up. Even though this half gallon is enough to entirely fill the horn, it’s not enough to even coat a fraction of the inner wall!

The mathematical explanation is a bit confusing if you haven’t taken a first course in calculus, but if you’re interested, you can check it out here.

Mathematica code:

x[u_, v_] := u
y[u_, v_] := Cos[v]/u
z[u_, v_] := Sin[v]/u
Manipulate[ParametricPlot3D[{{x[u, v], y[u, v], z[u, v]}}, 
    {u, 1, umax}, {v, 0, 2*Pi}, 
    PlotRange -> {{0, 20}, {-1, 1}, {-1, 1}}, 
    Mesh -> {Floor[umax], 20}, Axes -> False, Boxed -> False], 
    {{umax, 20}, 1.1, 20}]

Additional source not linked above.

s-c-i-guy:

Bill Nye Fights Back
How a mild-mannered children’s celebrity plans to save science in America—or go down swinging.
Read the full article on Popular Science

s-c-i-guy:

Bill Nye Fights Back

How a mild-mannered children’s celebrity plans to save science in America—or go down swinging.

Read the full article on Popular Science